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Abstract

A new formulation of MPCI is proposed. The on-line objective is not to minimize the sum of square errors, but to
maximize on-line the sum of the lower bounds on the minimum eigenvalues of the information matrices over finite
horizons. In that way, inputs to the process are allowed to excite the process highly enough to generate as much
modeling information as possible, while the process goes off-spec as little as possible. In this formulation control
objective is satisfied with output constraints. Constraints can be loosened or tightened according to need of
identification. The effectiveness of the proposed new methodology is illustrated through simulations on a linear
time-varying process.

1. Introduction

Mode Predictive Control (MPC) is a class of computer control algorithms that explicitly use a process model to
predict future plant outputs and compute appropriate control action through on-line optimization of a cost objective
over afuture horizon, subject to various constraints. Performance of MPC could become unacceptable due to a very
inaccurate model, thus requiring a more accurate model. Such a model frequently has to be developed while the
process is kept under MPC. This task is an ingtance of closed-loop identification and adaptive control. The
difficulty of closed-loop identification is that the input of the process to be identified is not directly selected by the
designer but ultimately by the feedback controller. According to a standard closed-loop identification approach, the
designer may indirectly influence the process input by exciting the feedback loop through external dithering signals
(Anderson and Johnson, 1982). The difficulty of this approach liesin the fact that the effect of the externa dithering
signals on the process input depends on the entire closed loop, which includes the process to be identified.
Consequently, guaranteeing that the process input will indeed be good for identification is not always easy and
hinges on assumptions such as knowing exactly the order of the process model, or assuming that input constraints
arenot an issue.

Of course, external excitation is not necessary for closed-loop identification. The sdlf-tuning regulator
(STR) with relay (Astrém and Wittenmark, 1989, p. 332), for example, is asimple method that uses anon-invertible
controller (relay) to get around the trap of identifying the plant as minus the inverse of the controller (Nikolaou,
1998). Similarly, the Ziegler-Nichols ultimate-cycling tuning method (Ziegler and Nichals, 1942) uses a time-
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varying feedback gain to identify a linear time-invariant process, an idea that has strong theoretical justification
(Ljung, 1987, p. 366). No inputs external to the loop are used in either case. Example 2 below shows that closed-
loop identification is possible even for a linear time invariant process with a proportional controller without any
externa excitation.

A key requirement for identification, either in open or closed-loop mode, is that data relevant to the
structure of the model to be identified demonsirate persistent excitation (PE). By ensuring that a corresponding
information matrix isinvertible, PE ensures that the |east-squares problem corresponding to parameter identification
has a unique solution (see section 2). When closed-loop identification is coupled with controller adaptation, lack of
PE may result in chaotic bursting phenomena, where the process outputs exhibit intermittent short periods of bursts,
followed by periods of quiescence (Anderson, 1985; Ydstie, 1997). Of course, if prior knowledge is available about
the process to be identified, then PE in its standard form as an invertibility requirement on the information matrix
may not be necessary, because the |east-squares minimization is constrained to produce parameter values within a
certain set (Lozano and Zhao, 1994).

Focusing on the essential role of PE in closed-loop identification, Genceli and Nikolaou (1996) introduced
the simultaneous MPC and identification (MPCI) adaptive control paradigm. MPCI resorts to on-line optimization.
An objective function over a moving horizon is minimized with respect to process inputs that satisfy all
conventional MPC constraints and, in addition, a constraint that data be persistently exciting for the structure of the
modd being identified. Advantages of MPCI arethat it does not require any explicit external dithering signals, PE
istrivially dependent on the feasibility of the on-line optimization (by construction of the agorithm), constraints on
process inputs are explicitly enforced, and constraints on process outputs are explicitly handled.

While the MPCI formulation may include a standard control objective, it provides wide flexibility for
defining different objectives aswell. For example, one could completely forego the on-line minimization of the sum
of future square errors (which attempts to keep outputs at their setpoints) and Smply attempt to keep outputs within
specification limits during identification, while maximizing the information about the process to be identified. This
brings us to the contribution of this work, namey the formulation of an MPCI variant with the following
modification: Process outputs are free to move away from setpoints, as long as they remain within specification
bounds. The on-line objective is not to minimize the sum of square errors, but to maximize on-line the
“magnitudes’ (sum of the lower bounds on the minimum eigenvalues) of the information matrices over finite
horizons. In that way, inputsto the process are allowed to excite the process as much as possible, for the generation
of maximum parameter information, while the process output violates specification bounds as little as possible.
Advantages of the proposed variant include the following:

(a) Easier controller design, through simplification of the on-line objective.

(b) Reduced computational load for the on-line optimization, by rendering the objective linear.

(c) Better satisfaction of realistic closed-loop identification goals, through replacement of setpoint tracking by
output constraints.

Therest of thisarticle is structured as follows: We first discuss the role of PE in identification and show
how it naturaly leads to MPCI. Next, we give a brief overview of the standard MPCI formulation. We then
introduce a new MPCI variant and outline the solution of the corresponding on-line optimization problem via
successive semidefinite programming (SSDP). Weiillustrate the new variant with computer smulationsin which we
make comparisons among a number of adaptive MPC variants and MPCI. Finally, we discuss further possibilities
for MPCI.

2. PE and MPCI

Therole of PE in identification has long been emphasized by a number of authors. We will discuss below a classic
example found in several identification and adaptive control textbooks, such Astrém and Wittenmark (1989, p. 82),
Ljung (1987, p. 365), and Soderstrom and Stoica (1989, p. 26).

Example 1

The process to be identified is described by

(1) y(k) = ay(k -1) +bu(k 1) + (k)



where the disturbances e(k) are independent and identically distributed (i.i.d.) random variables with zero mean
(white noise). The parameters a and b have to be estimated while the process is controlled by a proportional
regulator with gain K:
(2) u(k) = -Ky(k)
A standard andysis of this example proceeds as follows: From the above two eguations we get that the
closed-loop behavior of the above system is
(3) y(k) = (a-bK)y(k -1) + (k)
which implies that all models (4, 6) with
d=za+yK
6=b+y
whereyis an arbitrary scalar, will give the same input-output description of the process as the model (a,b) under

the proportional controller feedback. Therefore, the parameters a and b cannot be estimated, although the process
input u is pergstently exciting, as aresult of white noise going through afirst-order process:
(5) u(k) = (a —bK)u(k -1) — Ke(k)
Hence, “persistence of excitation isnot a sufficient condition on the input in closed-loop experiments’ (Ljung, 1987,
p. 366). The preceding statement, which is entirely correct, must be interpreted very carefully, because it might
leave theimpression that PE on process inputsis the only kind of excitation that would make identification possible.
However, it is the richness (PE) of the data that appear in the information matrix that matters more. In fact, PE of
process inputs is sufficient for process identification, whether in open or closed-loop, provided the process is
modeled by an FIR model and noise is white. Let us explain the situation by looking at the above example in a
dightly different way.

If least-squares identification of the above process were attempted, then it would require the minimization

(4)
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k k ~
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with respect to the parameters (4, 6) , @ each time instant k. This minimization would, in turn, necessitate the
solution of the linear system of equations

A y@) o
(7) (XW)%S:XTSE .
=" (9E

where
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But the matrix X, and consequently the matrix (X' X), has rank 1, because the second column of X is equa to the

first column times (—K), due to the presence of the proportional feedback controller, egn. ( 2). Therefore, egn. (7))
does not have a unique solution but a one-dimensiona family of solutions, captured by egn. (4 ), and consequently
identification of (a,b) isnot possible.

It is evident that for the DARX model structure considered for this process, PE on process inputs alone is
not immediately relevant to identification of the process. Instead, requirements should be placed on both process
inputs and outputs, so that

(a) the pseudo-inverse of X can exig,

(b) theinformation matrix XTX iswell conditioned,
(c) the matrix X and the noise vector e =[e(0)...e(k —1)]T are uncorrelated, i.e. lim %XTe =0, for unbiased
Kk - o
estimates (Soderstrom and Stoica, 1989, p. 186; Ljung, 1987, p. 178).

The above requirements (a) and (b) correspond to the strong PE condition, referring to data of finite length
(Goodwin and Sin, 1984, p. 73), as contrasted to the weak PE condition that refers to data of infinite length. MPCI,



as explained in the next section, explicitly addresses the above requirements (a) and (b), by forcing at each time step
the information matrix X ' X to bewell conditioned, namely
(9) XTX=pl =0

where the inequality symbol in equation (9 ) means that the information matrix XX is positive semidefinite. In
the sequel, the above ineguality symbol will denote matrix definiteness whenever the inequality involves matrices
on both sdes. Note that maximization of p in egn. ( 9 ) would also make small the parameter estimate bias

LIV VAP
X] X'e (Ljung, 1987, egn. (7.38)).
Continuing the analysis of the above example, let us assume that instead of the above DARX modd, the
following FIR model is used to approximately model the process.

(10) y(k) = glbi u(k =i) + e(k)

where e is erroneously assumed to be white noise. Note that the above use of an FIR modd is applicable only to
stable processes. Note, aso, that the disturbance model does not agree with the disturbance model of egn. (1). The

process is again under the proportional feedback control of egn. ( 2 ). Identification of the parameters {b} %,
according to the | east-squares method would require minimization of

EH

with respect to the parameters {li HY . Thisminimization would, in turn, necessitate the computar[i on of the pseudo-

inverse (UT U)_1UT of the matrix

O
(11) EDZ(y(Ill-l) y(l))zm E zbu(u—1)+e(u) y(n)H2

Ou(-Y) -+ u(-m) O
(12) TS A
Aik-1) - u(k-m)F
The pseudo-inverse exists if k = mand the matrix U hasfull rank. The matrix U, in turn, has full rank if theinput u
is persistently exciting, regardless of whether the identification experiment is conducted under open or closed-loop
conditions and regardless of what kind of controller is used. (Closed-loop conditions will have an effect on the
estimated parameter bias, since there will be correlation between noise and process input.) For the above closed-
loop system (egns. ( 1) and ( 2)), the input u is persistently exciting of any order, according to egn. ( 5 ).
Consequently, unique estimates of the Markov parameters {b}{2; can be obtained, even in the absence of signals
externally introduced to the loop. Of course, according to standard asymptotic analysis, those estimates will be
biased as

- a
(13) T
b 0,j=23-

in contrast to the ideal values of the Markov parameters {y} {2, , which would be approximately {ai_lb} ", for large
values of m. The bias can be reduced if external dithering signals are used. Figure 1, showing convergence of
{6}, verifies eqns. ( 13).

Asafinal illustration of the above ideas, consider the following Example:
Example 2

Consider least-squares identification of the process

(14) y(k) =ay(k —1) +bu(k —1) + e(k) —ae(k 1)

controlled by proportiona feedback asin egn. ( 2). The processis parametrized by an FIR modd as
m

(15) y(k) = > biu(k —i) +e(k)
i=1



where the disturbance model of egn. ( 15) isnow correct. Then, the process input u is persistently exciting of any
order (Ljung, 1987, p. 362). Indeed, egn. ( 16 ) multiplied by —K yields

m
(16) u(k) = =3 by Ku(k —i) - Ke(k) O u(z):+e(z)

=t 1+3 bKz™

i=1
This means that, for large values of k, the matrix U in egn. ( 12 ) will be invertible, hence the process will be
approximately identifiable. Thisis verified in the simulation of Figure 2. In fact, this example demonstrates that
externd inputs are not necessary in approximate closed-loop identification, athough they may be extremely useful,
e.g, inincreasing the convergencerate or reducing bias. What isimportant is the quality of the data, for example the
condition number of the information matrix, whichever way that result is achieved.
Example 1 and Example 2 above set the stage for the introduction of MPCI as an algorithm that explicitly

reguirestheinvertibility of the information matrix. Section 3 below gives a brief overview of MPCI, while section 4
introduces anew MPCI variant.

3. The MPCI on-line optimization problem
Let the following linear time-varying model be used to represent the process at time k.

(17) Y(lIk):ilh(lIk)U(l-iIk)+d(|Ik)

where:

(I|k) _ [rurrentor pastoutput,y(I), measureat timel <k
y N H‘utureoutputat timel predictedat timek <|

(1K) Cimplemented processinput, u(l), at timel <k
u =
Epurrent or future potential input at timel > k

d(l|k) = estimate made at time k of disturbance introduced at time|

b(l | k) = estimate made at time k of model coefficient at timel

Thedisturbance din egn. ( 17 ) isthe sum of a constant disturbance plus white noise. Based on the above, the MPCI
on-line optimization can be formulated as follows (Genceli and Nikolaou, 1996).

MPCI Original On-line Optimization Problem

M

(18) minimize z[w.(y(k+i|k)—ysp)2+riAu(k+i—11k)2+vsi2+hui2]

u(k|k),---,u(k+M—1|k),sl,---,sM i=1
subject to
(19) Uy 2 UK +i =1[K) 2 U i=1,2.M
(20) Au, = Au(k+i-1]K)=Au, . i=12.M
(21) ymax+uizy(k+i|k)2ymin_ui’ i:l,“',P

M 20

(22) u(k+M +i k) =u(k +i|Kk), i=0--M-1
(23) y(k+i[K) =@k +i|K)TAK|K) i=12.M

-1
- 01 . 0
(24) 9(klk)=EZO7\'<P(k—ilk)<P(k—jIk)T[D [ok ) @k=11k) - @k =s+1]k)}¥ (K)
]:

(25) SilAj(P(k‘j+i|k)(P(k—j+i|k)T}_-(pi—si)I::-0 i=12,..M
j=0



where

(26) Au(k+i-1]Kk) 2u(k +i -1|k) —u(k +i =2 k)
(27) V() =[yk) yk=12) - yk-s+D]
(28) ok-j+ilk) =[uk—j+i-1k) uk-j+i-2k) - uk-j+i-nk) 1

v and h are weights on the softening variables €; and ; for the PE lower bounds p; and output bounds Y., and

Ymin, respectively, used only when the on-line optimization with v=0 and p; =0 isinfeasible; w isthe weight on

the square error between setpoint and predicted output; ris the weight on the move supression term; Ais a

forgetting factor; and srefers to the length of the data set used for parameter estimation. In typical MPC fashion

(Prett and Garcia, 1988), the above optimization problem is solved at time k, and the optimal u(k) is applied to the

process.

Remarks

e The main difference between MPC and MPCI is equation ( 25 ), the PE constraints. Switching between MPC
and MPCI is smply amatter of including or excluding egn. ( 25) in on-line optimization. When to switch from
MPC to MPCI is an interesting and formidable problem on its own right. To address that problem, additional
information about the operating mode of a process may be helpful. For example, if a nonlinear process is
moved from one steady-state operating condition to another, then a new local linear model may have to be
identified. Information from gtatistics-based controller performance monitoring methods is also valuable, when
such methods attribute poor controller performance to an inaccurate process model .

e Thelast entry for the vector ¢ in equation (28) is1. Thisis because, the nonzero average of the disturbance d

is estimated as a component of the vector 8 in equation ( 24 ).

« ltisevident fromegns (24 ) and ( 25) that an “average’ parameter estimate 6 is used for output prediction.

e Equation (22) implies that MPCI has an M-periodic sequence of future inputs u(k+i|k).

* Thefeashility of the on-line optimization problem is guaranteed by the existence of the softening variables g,
and p. To reduce the dimensionality of the on-line optimization problem, one may assume that p; =p and
g; =¢. Thiswill result in minor loss of controller flexibility, because output constraints are important only for
the first few steps of the prediction horizon. It must be noted that the softening variables g and | are used
when the on-line optimization problem with hard output constraints is infeasible. The weights v and h on the
variables g and ; should be selected a few orders of magnitude above the weight on the output error, to ensure
that softening will violate constraints ( 21 ) and ( 25) aslittle as possible.

e Theparameter s can be selected fredly, aslong asit satisfies theinequality

(29) s>n

*  Thechoice of the weightsin the objective function of egn. ( 18 ) isimportant for a balance between control and
identification. While sensible choices can be made on the basis of engineering arguments, the issue will be
simplified with the introduction of anew MPCI variant in section 4.

e Gencdi and Nikolaou (1996) developed a successive semi-definite programming (SSDP) algorithm with
guaranteed convergence to a local optimum of the on-line optimization problem (Shouche, Gencdi and
Nikolaou, 1996). The computational complexity of SSDP is not much higher than the complexity of quadratic
programming (QP) used in standard MPC. SDP and SSDP are briefly explained in section 5.

e Notice that only u(k]k) among all decision variables {u(k|k),---,u(k|k+ M -1} appearsin inequality ( 25), as
shown in Figure 3. The important implication of this observation is that PE and maximal information matrix
aretrivially guaranteed for the closed loop, regardiess of the behavior of the true process, as long as the on-line
optimization problem has a feasible solution with p; >0. Consequently, parameter convergence can also be

easily established.

4. Replacing output regulation by output constraints

Since MPCI relies on on-line optimization, it provides wide flexibility for formulating various constraints and
defining objectives other than the standard minimization of 2-norms. For example, one could completely forego the



minimization of the sum of square errors (which attempts to keep outputs at their setpoints) and smply attempt to
keep outputs within specification bounds during identification, while maximizing the lower eigenvalue of
corresponding information matrices. The control objective may be loosened or tightened by adjusting the output
constraint bounds. In addition, the MPCI formulation trivially guarantees, by construction, that data are going to be
as informative as possible. This flexibility allows us to develop a new mathematical formulation of realistic
engineering goal's associated with the identification of a process controlled by constrained MPC. To the best of our
knowledge, all past dual control formulations have included a regulation related term (sum of square errors), which
limits the flexibility of dual control. Note that the PE constraints, equation ( 25 ), are not convex. These are the
only MPCI constraints that are not convex, because of the nature of MPCI as a PE enforcing agorithm. All other
constraints as well as the objective function may capture a very wide class of engineering requirements without
sacrificing convexity (Boyd et al., 1994). Below we are showing two MPCI variants that capitalize on the MPCI
flexibility discussed above, by replacing output setpoint-tracking with output congraints.

MPCI variant P1

As discussed above, in this MPCI variant the process output is free to move away from its setpoint but isrequired to
remain within specification bounds. The on-line optimization problem is not to minimize a quadratic objective
function involving inputs and states, but to maximize the sum of the lower bounds on the minimum eigenvalues of
information matrices over afinite horizon. In that way, inputsto the process are alowed to excite the process highly
enough to generate as much information on process parameters as possible, while the process is outside
specifications aslittle aspossible. The on-line optimization problem becomes
M P

(30) maximize Y ri—hy u

UCK[K) = (kM 1K) 35 oy s by 152 T
subject to the congraints of egns. (19) to ( 24 ) and the unsoftened PE constraints

s-1 .

(31) SNk = j +iK)ek = | +i[K)Tmpil =0, i =1-,M
j=0

For MPCI variant P1 we select

(32) sS=M.

Remarks

e Asseen from egns. (30) and ( 31 ), the above MPCI variant maximizes the lower bounds on the minimum
eigenvalues of information matrices. In this way, inputs are forced to satisfy a PE constraint, in order to
generate as much parameter information as possible.

e Thechoice s=M, egn. ( 32), corresponds to a forgetting factor that is identically zero for data older than M
time steps.

*  The engineering objective of keeping the output y closed to its setpoint is expressed by the output constraint in
equation (21).

e Sinceapoor mode isused to predict future values of the output v, at least in theinitial stages of identification,
care must be taken to express the output constraints conservatively enough, to compensate for inaccuracies in
the prediction of y. A simple approach to thisissueis to tighten the upper and lower bounds on 'y, Yima and Yimin,
respectively. A more sophisticated approach, relying on chance-constraint formulation of output constraintsis
presented in Schwarm et d. (1998).

* Inplaceof equation ( 24 ), one can easily use the recursive least squares (RLS) algorithm. P(0), the covariance

of é(O), and is usually chosen sufficiently large since at the beginning of identification. Parameter
convergence using therecursive least squares agorithm is guaranteed if the following condition is satisfied:

-1
(33) Ilimm/‘mmgz(ﬂ(i)(ﬂ(i)TE:w
- =1

MPCI variant P2

The difference between this MPCI variant and P1 is that instead of requiring PE in a moving horizon with fixed
window length, asin egn. ( 31 ), we enforce PE over a series of windows of increasing length, asfollows:



k=1+i

(34) 5 Nglk=j+ijgk = j +ijQT=pil, i =L, M
j=0

The common starting point of the PE horizons (Figure 3) is at the beginning of identification.
Remarks

* Notice that the upper limit of the summation in egn. ( 34 ) isk—1 +i. Thisincreases the identification
horizon length at each time step k, asis standard in recursive least squares (RLS),

e Since this variant retains the old data and keeps adding more new data, it has to be used in cases where
parameters do not change during identification. In that case thereisvaluableinformation in all past data. In
contrast, variant P1 must be used in cases where parameters change with time, and distant past information
has to be discarded.

o If egn. (24 ) isreplaced by recursive least squares (RLS), then it is sraightforward to show that the PE
constraint in variant P2, egn. ( 34 ), purports to generate data that do not result in singularitiesin RLS.

* Both sidesof egn. (34 ) can be multiplied by 1/k, to prevent excessively large numbers for large k.

5. Numerical solution of the MPCI on-line optimization problem

The inclusion of PE constraints in the MPCI on-line optimization generates a non-convex problem, because the PE
constraints are non-convex quadratic matrix inequalities (QMI). While the global optimum of this problem may be
hard to find, a local optimum can be easily found. Genceli and Nikolaou (1996) developed an agorithm that
successively employs semidefinite programming (SDP), to converge to a local optimum. Shouche et al. (1996)
showed that convergence of the successive SDP (SSDP) of Genceli and Nikolaou (1996) is guaranteed. We give a
brief overview of that algorithm below, and illugtrate how it can be applied to the MPCI variants of thiswork.
Approximation of QM| by LMI

To circumvent the nonconvexity problem resulting from the PE constraints, we take advantage of the following

inequality (Genceli and Nikolaou, 1996)
(35) SN Qk- | k0K - | +i07 =L (UK), =L M
=0

where

L (U(k)) = 57\14’* (k= j+ilk)ak = j+ifk)" +
1=0

(36) + SNk ] +ik)er (k- | +ilk)T +
i=0

r .
+ Y Mo* (k= j +illk)e* (k= j +i[k)"
j=0
(37) U(K) =[u(klk) u(k+1k) - u(k+M =1k)]"

and the upper limit, r, of the summation inegn. (35) isequal to M -1 inegn. (31), and k+i -1 inegn. ( 34), for
the MPCI variants P1, and P2, respectively. The vectors ¢~ 00" in equation ( 36 ) can be thought of as points of

linearization (Genceli and Nikolaou, 1996).

Therefore, by virtue of equations. (35), the QMI inegns. (31) or ( 34 ) are satisfied if the inequalities
(38) L (U(K))=p;! i=12,..M
are satisfied. Theinequalitiesin equation ( 38) can be easily shown to be linear matrix inequalities (LMI), i.e., they
have the general form

(39) G(2) 2 Go + 3 G20

where zOOY isavariable, and the symmetric matrices G, = G;" OO™N | i=0,..., q, are given. It can be further
shown (Gencdi and Nikolaou ,1996) that the M LMI in equation ( 38) can bewritten asa single LMI of the form



W,, 0 0 O C,, 0 00O M,;, 0 00O
o5 - O M1 05 - oX oo . 0
(40) 0o .0 gryuk+ypo . 0 gy p[E0 . 0 g0
Ho 0 wy,H"° Ho o cywH'™ Ho o TuH
FO F1+1 FM+i

Details can be found in Genceli and Nikolaou (1996).
Therefore, one can find a sub-optimal solution of problems P1 or P2, if one solves an optimization problem
of thefollowing form:

(41) i S +hP H
n;(lnDiglpl izllul[l

subject to
(42) Ax >b

2M +P
(43) Fot 2 xijFij=0

i=1
where
(44) x=[u(k|k) u(k+1]k) -~ u(k+M=-1k) p; - py My Hp]

and the inequality of egn. (42 ) captures all MPCI inequality constraints excluding the PE constraints. The above
optimization problem in equations
(41)to (43) can finally be reformulated as the following SDP problem:

MPCI On-line SDP Problem

(45) minCTX
X

subject to

- Diag(b) 00 2M+P [Diag(a;) 0O
(46) - Diag(b) iag(a) 0g

g o0 Fog & 00O Fi

[ G;
where A:[al a, - az,\,,+F,],ai is a column vector; Diag(v) is a diagonal matrix with diagona elements
equal to the entries of the vector v; czg) - 0 -1 - -1 1 - 1 [TDDZM“’; x0gM*P.
Mt 2mt @em+p)th

Fi, i =0,---,2M , are defined in equation. (40); and F, =0, i =2M +1---2M +P.

Semidefinite programming (SDP)
Optimization problems involving minimization of a linear function subject to an LMI are caled Semidefinite

Programming (SDP) problems (Vandenberghe and Boyd, 1994). These are convex optimization problems of the
form

(47) minc' z
z
subject to
g
(48) Go+327Gi=0
i=1

The solution of SDP problems can be obtained by powerful agorithms like interior point methods. In our
simulations, solutions are obtained by a Merhotra-type primal-dual predictor-corrector interior-point algorithm for
semidefinite programming.(Alizadeh et al.,1997).

It should be noted that, by its structure, the SDP problem corresponding to MPCI is guaranteed to have a
feasible solution.
Successive SDP
To obtain the SDP problem of equations ( 45) and ( 46) at a given time step k, the PE constraints, egns. ( 31 ) or (
34), were substituted by LMI after linearization around the vectors ¢” 00™. If ¢ are poorly chosen, then the
solution of the on-line SDP problem may be far from the original MPCI nonconvex problem (variants P1 and P2).




To improve the solution of the MPCI on-line problem, one can iteratively refine the vectors ¢ and successively
solve each corresponding SDP problem. Refined ¢ contain values of u that are optimal for the SDP problem of the

previous iteration corresponding to the previous vector ¢ (Genceli and Nikolaou, 1996). It should be noted that

the solution of each successive SDP problem is a feasible solution of the original problem. We summarize the
SSDP procedure below.
Successive SDP for the solution of the M PCI on-line problem

Sepl. Compute thematrices {G;,i =12..2M + P} in equation (46)

Sep2. Select
@ (k= j+i|k),j =0,-{M -1 forvariantP1,M +i —1for P2k +i -1forP3}  i=1--M -1
A good choiceis:
(49) (p*(k—j+i|k)=[0(1 -y 1]T
where
k=j+i=1)if j—i+l=1(pastu
(50) a|=D uk=j+i=1)if j—i (pastu)

%JSDP(k— j+i-llk=2)if j—i+]<1(SDPsolutionatk —1, butnotimplementd)
Sep 3. Solvethe SDP problem, equations (45) and (46 ). Let the optimal solution be x

(51) usp(kl ke usp(+M =D py-= py pr=- hip]
Sep4. Update ¢ asfollows:

(52) Prewk—i+ilk=[o -~ on 1

where:

O uk-j+i-=Il)if j—-i+l=1(pastu)
(53) 9 =0 .y o .
Uspp(k—j+i=1]Kk)if j—i+l <1 (solutionatk)

Sep5.  If (CTde —chneW)z K, and

oy~ (”newDH > K, then Xoig = Xnew @0 @ old = @ newgo to Sep 3. Else

goto Sep 6.

Sep 6.  Implement thefirst input move u(k|k) to the process.

Sep 7.  ldentify the process parameter using equation (24 ) or RLS.
Sep 8.  Updatethe output prediction using equation ( 23).

Sep9. Let k « k+1 andgoto Sep 1.

6. lllustrative examples

Example 3
Let thereal behavior of alinear process be described by the equation
(54) y(k) =u(k -1 + 0.5u(k —2) +0.2u(k — 3) + 0.1u(k — 4) + d (k) +w(k)

where d is a deterministic disturbance and w is white noise with zero mean and standard deviation equa to 0.01.
The process input u must satisfy the constraints
(55) -04<u(k)<01
at all timesk. Assume that the linear model
(56) y(k+i|k)=11u(k+i-1]k)+0.55u(k+i—-2|k)+0.22u(k +i =3| k) +0.11u(k +i —4| k) +d(k +i | k)
isavailable for the above process from previous data.

The process experiences a step setpoint change

(57) y¥=-0.3
at time k=0. After this set point change, we want the output y to be constrained as
(58) -0.4< y(k) <-0.25

to meet specifications. The process also experiences the following upsets:
Period 1 (0<k <25) The system isupset by the step disturbance
(59) dk) =0.1
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starting at time k = 0;
Period 2 (26< k <100) At time k=26 thereal process has changed as follows
(60) y(k) = —=0.3u(k —=1) —0.2u(k — 2) — 0.1u(k — 3) + 0.05u(k — 4) +d (k) + w(k)
The system is upset by the step disturbance
(61) dk)=-04
We use the following four control schemesto control the above process:

A. MPC,

B. MPC with adaptation,

C. MPC with adaptation and external dithering ,and

D. MPCI variant P1,
Controller parameter values are shown in Table 1.

Table1 - Valuesof controller parametersfor Example 3

Par ameter Symbol Valuefor MPC, Case C | Valuefor MPCI, Case D
Contral horizon length M 8 8
Optimization Horizon Length P 12 12
Move suppression term weight ri 0.1 Not applied
Output error term weight W, i=1,....M+n 1 Not applied
Forgetting Factor A 1 1
Weight of constraint softening .
varisble ¢ h Not applied 100
Standard deviation of dithering signal 0.25 Not applied
Case A: MPC

Conventional MPC resulted in saturation of the process input and never recovered as illustrated in Figure 4.

Case B: MPC with Adaptation

Adaptation was added to the MPC scheme. Adaptation began at k=5 after sufficient data were collected. Process
inputs reached saturation, thus resulting in a badly conditioned information matrix. Thus parameters could not be
identified properly. This scheme did not recover aswell (Figure5, Figure 6).

Case C: MPC with Adaptation and Dithering on the Process | nput

The process input was dithered through addition of a normally distributed signal with zero mean and standard
deviation of 0.25. Theintention was that dithering would result in PE on process inputs. Although this scheme did
better than MPC with adaptation, parameters did not converge to real process coefficients. In addition, the process
output y did not stay within the specified bounds (egn. ( 58 )) most of thetime.(Figure 7, Figure 8).

Case D: MPCI

After standard MPC was implemented for the first 25 time steps, MPCI was turned on at the 26" time step, when the
process changed. The process output y stayed within the specified bounds (egn. ( 58 )). Adaptation began at k=32.
MPCI correctly identified the new process parameters and disturbance after sufficient data were collected, i.e. when
k>32 (Figure 9, Figure 10).

Example 4

Consider again that the real behavior of alinear process is described by an equation similar to ( 54 ), with the noise
variable w(t) being colored as

(62) w(k) = e(k) +0.8e(k —1)

where e is white noise with standard deviation o, =0.01 and g, =0.1. Table 2 shows estimates at the final point

of thesimulations. As expected, estimates are somewhat biased. The effect of colored noise on MPCI and possible
modifications need to be further investigated.
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Table2

Parameter Parameter estimate for g, = 0.01 Parameter estimate for o, = 0.1
d (d=-04) -0.3992 -0.3929
by (b, =-0.3) -0.2966 -0.1900
b, (b =-0.2) -0.1950 -0.2319
by (b =-0.1) -0.1005 -0.1325
b, (b, =0.05) 0.0481 -0.0373
Example 5
Consider the linear process
(63) y(k) = u(k =1) +0.2u(k - 2) +0.04u(k — 3) + d (k) + w(K)

where d is a deterministic disturbance and w is white noise with zero mean. The process input must satisfy the
constraints

(64) -1<u(k) <1

(65) -05<y(k)<05

at all times k. Note that the bounds on the output y are tighter than the actual specification bounds, to account for
model uncertainty during identification. Assumethat the linear model

(66) y(k+i|k)=2u(k+i-1|k) +0.2u(k+i -2| k) +d(k+i| k)

isavailable for the above process from prior information. The process is disturbed by white noise w with zero mean
and o,, =0.1, and by a step disturbance of magnitude 1.5, entering the system at time k= 30. MPCI (variant P2) is
compared to the following adaptive MPC scheme:

-1 P,

(67) minimizegz U+ 110 —ugp(k +D)F +hS 1, %
u =0 i=1

subject to

(68) Ymin = Hi < Y(K+1[K) S Ymax * 4i i=1..P

(69) Unin S UK +i[K) € Upax 1= 0...P -1

and egns. (24) and ( 25 corresponding to MPCI variant P2; where ug, is a predetermined persistently exciting

input sequence; and h isthe weighting factor on the output constraint softening variable. The first term in egn. ( 67
) purports to force the process input u to be persistently exciting. The second term is used only when the on-line
optimization isinfeasiblewith h =0. Note that the only differences between the MPCI and adaptive MPC schemes
of this example are (a) the objective functions, egn. ( 30 ) vs. egn. ( 67 ), and (b) the presence of PE constraints in
MPCI. Note, aso, that both schemes require the output y not to track a setpoint, but merely to stay within
specification bounds. Valuesfor controller parametersare givenin Table 3

Table 3—Values of controller parametersfor Example 5

Par ameter Symbol Value for Adaptive MPC Value for MPCI
Contral horizon length M 5 5
Optimization Horizon Length P 5 5
Forgetting Factor A 1 1
Weight of constraint softening variables, €, p h 1000 100

For both control schemes, the process is under MPC until k = 25, and under the above adaptive MPC until k
= 29. Thereason for not switching on MPCI immediately is discussed in Genceli and Nikolaou (1996). At time
k =30 astep disturbance of magnitude 0.2 enters the system.

Figure 11 compares estimates of the parameter covariance matrices corresponding to MPCI and MPC. The
clear superiority of MPCI is evident. What is even more important is that athough both controllers force the
process output beyond its bounds (as expected, because of uncertainty in future output predictions due to model
inaccuracies) MPCI produces a lower sum of squares of output constraint violation errors than the specific adaptive
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MPC. The reason is that MPCI selects inputs that maximize information in the presence of an external step
disturbance, while attempting to keep process output within bounds. Adaptive MPC, on the other hand, attempts to
reconcile disturbance rgection and identification in away that isnot optimal, because it forces the process input to
follow a signal that would be persistently exciting, hence optimal, in the absence of disturbance.

7. Conclusions

In this work we discussed the basic philosophy behind MPCI and proposed a new MPCI variant. In the proposed
new variant, process outputs are free to move away from setpoints, as long as they remain within specification
bounds. Process inputs, on the other hand, are constrained to excite the process as much as possible, for the
generation of maximum parameter information, while process outputs violate specification bounds as little as
possible. By its construction, the proposed algorithm reduces the analysis of closed-loop PE enforcement to a
feasihbility problem. Advantages of the proposed variant include
e Easer controller design, through simplification of the on-line objective.
e Reduced computationa load for the on-line optimization, by rendering the objective linear (Boyd et al.,
1994).
« Better satisfaction of realistic closed-loop identification goals, through replacement of setpoint tracking by
output constraints.
The merits of the proposed approach were illustrated through two simulation examples, in which the superiority of
MPCI over various versions of adaptive MPC (essentialy the only alternative for constrained control) was
demonstrated.
While the basis philosophy of MPCI is simple, namely inclusion of PE constraints in on-line optimization,
there are many facets of it that need to be studied, along the lines of therich literature on system identification.
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Figure 1. Parameter convergencefor egn. (10), a=02, b=1, K=1, m = 3.
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Figure 2. Parameter convergencefor egn. (15), a=02, b=1, K=1, m=2.
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Figure 4. Processoutput and input for closed loop with MPC, Example 3
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Figure5. Processoutput and input for closed loop with adaptive MPC, Example 3
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Figure 6. Process model parametersand disturbance estimatesfor closed loop with adaptive M PC, Example
3 (dashed lines arereal values, continuous line ar e estimates)
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Figure 7. Processoutput and input for closed loop with adaptive M PC and exter nal dithering, Example 3
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Figure 8. Process model parameter sand disturbance estimatesfor closed loop with adaptive M PC and
dithering, Example 3 (dashed lines arereal values, continuous line ar e estimates)
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Figure 9. Processoutput and input for closed loop with MPCI variant P1, Example 3
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Figure 10. Process model parametersand distur bance estimatesfor closed loop with MPCI, Example 3
(dashed lines arereal values, continuous line ar e estimates)
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Figure 11. Comparison of the size of parameter covariance estimates for adaptive M PC (solid line) and
MPCI (dashed line) for Example 5
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Figure 12. Process output and input for the closed loop with adaptive M PC, Example 5
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Figure 13. Parameter convergence for closed-loop identification with adaptive M PC, Example 5
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Figure 14. Processoutput and input for the closed loop with MPCI, Example 5

-28 -



parameter

10

10

20

40

50

10

20

40

50

Figure 15.

-29-

10

Parameter convergencefor closed-loop identification with MPCI, Example 5

20

30

40

50

60



